
UNIVERSITY OF WASHINGTON

Importing, Exporting, and Cleaning

Data

Adam Kuczynski

UNIVERSITY OF WASHINGTON

Today's Theme:

"Data Custodian Work"
Issues around getting data in and out of R and making it ready for your
analyses:

Working directories and projects

Importing and Exporting data: readr and haven

Cleaning and reshaping data: tidyr

Dates and times: lubridate

Controlling factor variables: forcats

Working with strings: regular expressions and stringr

2 / 51

UNIVERSITY OF WASHINGTON

Working Directory
Your working directory is the folder on your computer where R will look for and save
things by default

You can find your current working directory with getwd()

getwd()

You can change your working directory using setwd()

setwd("/home/adam/Desktop")

R scripts are automatically run in the directory they are currently in. This means that,
when you open a .R or a .Rmd file, your working directory is automatically set to that

folder.1

[1] "/home/adam/Documents/Class Materials/PSYCH 548 (Intro to R Programm

[1] This only applies if RStudio is not already open.

Note: Windows users need to change back slashes (\) to forwarded slashes (/) for filepaths

3 / 51

UNIVERSITY OF WASHINGTON

Relative Paths
In your working directory, you can (and should!) refer to files using relative paths:

. refers to your current working directory

.. refers to the folder your working directory is located in

Examples:

./data/my_data.csv refers to a file called "my_data.csv" located in the "data" subfolder of

my working directory1

../../figure1.png refers to a file called "figure1.png" located two folders "up" from my
working directory

The here package

The here package offers an easy and somewhat more reliable way of constructing relative
file paths. When you load the here package at the top of your script, it looks for a .here file
(which is automatically generated), allowing you to reference folders regardless of where the
.R file is in the project structure. Check it out!

[1] The ./ is not strictly necessary. Often you will see it written as data/my_data.csv , which is perfectly
fine!

4 / 51

https://here.r-lib.org/

UNIVERSITY OF WASHINGTON

Importing and Exporting Data

5 / 51

UNIVERSITY OF WASHINGTON

Helpful Packages
R has the ability to read and write data in a number of formats. Although
much of this functionality is built into Base R, several packages help as well:

haven (SPSS, Stata, and SAS files)

foreign (SPSS, Stata, SAS, and other files)1

readxl (MS Excel files)

googlesheets4 (communicate directly with Google Sheets)

readr (enhances base R functionality)

The most common way to read/write data in R is with a .csv file!

[1] I've found this package to be a bit buggy and prefer to use haven

6 / 51

UNIVERSITY OF WASHINGTON

.csv Files

Read .csv files with: read.csv("data/my_data.csv")

Write .csv files with: write.csv("data/my_data_cleaned.csv)

Alternatively you can use readr ...

Read with readr::read_csv("data/my_data.csv")

Write with: readr::write_csv("data/my_data_cleaned.csv)

"mpg","cyl","disp","hp","drat","wt","qsec","vs","am","gear","carb"
21,6,160,110,3.9,2.62,16.46,0,1,4,4
21,6,160,110,3.9,2.875,17.02,0,1,4,4
22.8,4,108,93,3.85,2.32,18.61,1,1,4,1
21.4,6,258,110,3.08,3.215,19.44,1,0,3,1
18.7,8,360,175,3.15,3.44,17.02,0,0,3,2
18.1,6,225,105,2.76,3.46,20.22,1,0,3,1
14.3,8,360,245,3.21,3.57,15.84,0,0,3,4
24.4,4,146.7,62,3.69,3.19,20,1,0,4,2

7 / 51

UNIVERSITY OF WASHINGTON

Alternative Formats
The read.table() (and write.table()) function is a generic function that
can read delimited files of any kind. In fact, read.csv() is a special case of
read.table() !

For example:

To read .tsv files:
read.table("data/my_data.tsv", sep = "\t")1

To write .tsv files:
write.table("data/my_data.tsv", sep = "\t)

To read in files with values separated by whitespace:
read.table("data/my_data.tsv", sep = " ")

To write files with values separated by whitespace:
write.table("data/my_data.tsv", sep = " ")

[1] Or read.delim("data/my_data.tsv", sep = "\t)

8 / 51

UNIVERSITY OF WASHINGTON

.RData Files

.RData1 files are specific to R and allow you to store as many objects as you
would like into a single file

To write a .RData file, use the save() function:

save(my_data_raw, my_data_cleaned, fit_lm, fit_lm_quadratic,
 file = "MyStudy.RData")

To read a .RData file, use the load() function:

load(file = "MyStudy.RData")

☝ When you load .Rdata files, the objects and their names are loaded so you
do not do this (like you do with read.csv()):

mydata <- load("MyStudy.RData") # 👈 Don't do this!

[1] The file extension can be whatever you want, but it defaults to .RData

9 / 51

UNIVERSITY OF WASHINGTON

Cleaning Data

10 / 51

UNIVERSITY OF WASHINGTON

Initial Spot Checks
First things to check after reading in data:

Did all the data make it into R?
May need to use a different package or manually specify range

Are the column names in good shape?
Modify col_names= or change with colnames() or
dplyr::rename() function

Are there "decorative" blank rows or columns to remove?
If possible, remove these from the source, otherwise do this with code
(e.g., data[-1,] to remove the first row)

Are missing values ("" , NA , -999 , etc.) represented correctly?
Modify na= or change these after reading in the data

Are the column classes correct? Numbers are numeric, strings are
character, etc...

Modify with col_types= or change these after reading in the data

11 / 51

UNIVERSITY OF WASHINGTON

Slightly Messy Data
Area FullProf NotFullProf

Clinical 8 4

Social 3 1

Other 11 10

What is an observation?
A group of faculty in a given area

What are the variables
Area, Title

What are the values?
Area: Clinical, Social, Other
Title: Full professor, Not full professor (as column names 👎)
Count: spread over two columns

12 / 51

UNIVERSITY OF WASHINGTON

Tidy Version
Area Title Count

Clinical FullProf 8

Clinical NotFullProf 4

Social FullProf 3

Social NotFullProf 1

Other FullProf 11

Other NotFullProf 10

✅ Each variable is a column

✅ Each observation is a row

✅ Ready for analyses and plotting!

13 / 51

UNIVERSITY OF WASHINGTON

Billboard data
Notice how read.csv() can also take a URL
bb <- read.csv("https://adamkucz.github.io/psych548/data/billboard.csv")

year artist track time date.entered wk1 wk2 wk3 wk4 wk5

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 87 82 72 77 87

2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92 NA NA

2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68 67 66

2000 3 Doors Down Loser 4:24 2000-10-21 76 76 72 69 67

2000 504 Boyz Wobble Wobble 3:35 2000-04-15 57 34 25 17 17

2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34 26 26

2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96 95 100

2000 Aaliyah I Don't Wanna 4:15 2000-01-29 84 62 51 41 38

2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38 28 21

2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74 69 68

Week columns continue up to wk76 !

14 / 51

UNIVERSITY OF WASHINGTON

Billboard
What are the observations in the data?

Week since entering the Billboard Hot 100 per song

What are the variables in the data?
Year, artist, track, song length, date entered Hot 100, week since first
entered Hot 100 (spread over 76 columns 👎), rank during week (also
spread over 76 columns 👎)

What are the values in the data?
e.g., 2 Pac, Baby Don't Cry (Keep..., 4 mins 22 secs, Feb 26, 2000, week
3, rank 72

15 / 51

UNIVERSITY OF WASHINGTON

Tidy Data
Tidy data (i.e., "long data") are organized such that:

1. The values for a single observation are in their own row

2. The values for a single variable are in their own column

3. There is only one value per cell

Why organize your data in this way?

Easier to understand many rows than many columns

Required for most types of analyses

Required for creating figures

Fewer confusing variable names

16 / 51

UNIVERSITY OF WASHINGTON

The tidyr Package
The tidyr package is part of the tidyverse and provides functions that help
clean ("tidy up") data:

pivot_longer() : takes data in wide format and pivots them down to
make two new columns

a name column that stores the original column names
a value column with the values of the original columns

pivot_wider() : takes data in long format and pivots them into multiple
columns (inverts pivot_longer())

separate() : pulls apart one column into multiple columns (common
after pivot_longer() where values are embedded in column names)

extract() works like separate() but takes a regular expression to
define groups rather than separation value

extract_numeric() does a simple version of this and just extracts
the numeric part

17 / 51

https://tidyr.tidyverse.org/
https://www.tidyverse.org/

UNIVERSITY OF WASHINGTON

pivot_longer()
Let's use pivot_longer() to get the week and rank variables out of their
current layout into two columns (more rows, fewer columns):

library(tidyr)
library(magrittr)

bb_long <- bb %>%
 pivot_longer(cols = matches("^wk"),
 names_to = "week",
 values_to = "rank")

We could instead use: pivot_longer(wk1:wk76, names_to = "week",
values_to = "rank") to pull out these contiguous columns, however it is
safer to reference columns by column name!

dim(bb_long)

[1] 24092 7

18 / 51

UNIVERSITY OF WASHINGTON

pivoted Weeks
year artist track time date.entered week rank

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk1 87

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk2 82

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk3 72

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk4 77

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk5 87

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk6 94

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk7 99

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk8 NA

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk9 NA

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 wk10 NA

Now we have a single week column!

19 / 51

UNIVERSITY OF WASHINGTON

Can we pivot() better?
summary(bb_long$rank)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.00 26.00 51.00 51.05 76.00 100.00 18785

This is an improvement, but we might not want to keep the 18785 rows with
missing ranks (i.e., observations for weeks since entering the Hot 100 that the
song was no longer on the Hot 100)

20 / 51

UNIVERSITY OF WASHINGTON

Pivoting Better: values_drop_na
The argument values_drop_na = TRUE to pivot_longer() will remove rows with
missing ranks

bb_long <- bb %>%
 pivot_longer(cols = matches("^wk"),
 names_to = "week",
 values_to = "rank",
 values_drop_na = TRUE)

summary(bb_long$rank)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 26.00 51.00 51.05 76.00 100.00

dim(bb_long)

[1] 5307 7

No more NAs and way fewer rows!

21 / 51

UNIVERSITY OF WASHINGTON

parse_number("123abc456")

[1] 123

parse_number("abc123456def789")

[1] 123456

parse_number()
The week column is character type, but we want it to be numeric:

class(bb_long$week)

[1] "character"

The tidyr::parse_number() function will extract the numeric information from a string:

bb_long$week <- parse_number(bb_long$week)
class(bb_long$week)

[1] "numeric"

parse_number() only extract the first set of numeric information. For more complex
pattern matching, you'll need to use regular expressions (covered later today)

22 / 51

UNIVERSITY OF WASHINGTON

names_prefix=
You can also use the names_prefix= argument in this case:

bb_long <- bb %>%
 pivot_longer(cols = matches("^wk"),
 names_to = "week",
 values_to = "rank",
 values_drop_na = TRUE,
 names_prefix = "wk",
 names_transform = list("week" = as.integer))
kable(head(bb_long, 3))

year artist track time date.entered week rank

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 1 87

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 2 82

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 3 72

23 / 51

UNIVERSITY OF WASHINGTON

separate()
The track length (time) column isn't ready for analysis. Let's convert it to length in seconds:

bb_long <- bb_long %>%
 separate(time,
 into = c("mins", "secs"),
 sep = ":",
 convert = T) %>%
 relocate(mins, secs, .after = "rank")

bb_long$length <- (bb_long$mins*60) + bb_long$secs

year artist track date.entered week rank mins secs length

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87 4 22 262

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82 4 22 262

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72 4 22 262

relocate() is from the dplyr package (also in the Tidyverse) And allows you to manually
shuffle around the order of columns. We will talk about dplyr next week!

24 / 51

https://dplyr.tidyverse.org/
https://www.tidyverse.org/

UNIVERSITY OF WASHINGTON

pivot_wider()
pivot_wider() does the exact oppose of pivot_longer() , and is used when you want
several columns that each represent one observation.

Although most regression analyses in R require your data to be in long format, some (e.g.,
SEM) require it to be in wide format.

Let's reshape bb_long back into wide format!

bb_wide <- bb_long %>%
 pivot_wider(names_from = "week",
 values_from = "rank",
 names_prefix = "wk")

year artist track date.entered mins secs length wk1 wk2

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 22 262 87 82

2000 2Ge+her The Hardest Part Of ... 2000-09-02 3 15 195 91 87

2000 3 Doors Down Kryptonite 2000-04-08 3 53 233 81 70

2000 3 Doors Down Loser 2000-10-21 4 24 264 76 76

25 / 51

UNIVERSITY OF WASHINGTON

Dates and Times

26 / 51

UNIVERSITY OF WASHINGTON

Working with dates and times
Working with dates and times can be challenging, but fortunately R has nice
built in capabilities and packages such as lubridate that are very helpful.

A note on Unix time (i.e., epoch time)

Unix time is the standard way computers keep track of date times, and you
will likely encounter it at some point in your career. Unix time is the number
of seconds since midnight UTC on Jan. 1, 1970.

For example, the exact time right now in Unix Time is: 1627588084

To convert epoch time in R, use the as.POSIXct() function. Here's the
datetime in PDT when we hit 1 billion seconds after Jan 1, 1970:

as.POSIXct(1e9, origin = "1970-01-01")

[1] "2001-09-08 18:46:40 PDT"

27 / 51

https://lubridate.tidyverse.org/

UNIVERSITY OF WASHINGTON

as.Date("20jul2021", "%d%b%Y")

[1] "2021-07-20" ## [1] "July 27, 2021"

Datetime Conversion
Besides converting Unix Time into a more human-readable format, you will be
converting datetimes from/into different formats

When converting date/datetime objects (regardless of the function), you will
be using a set of conversion specifications which are technically unique to
your OS but are widely shared across platforms. These specifications are
represented as strings and start with a % followed by a letter. See ?strptime
for a full list of specifications

as_datetime("July 27, 2021 01:00:00 PM",
 format = "%B %d, %Y %H:%M:%S %p",
 tz = "PDT")

[1] "2021-07-27 01:00:00 PDT"

format(as.Date("2021-07-27"), "%B %d, %

28 / 51

UNIVERSITY OF WASHINGTON

as.Date("2021-07-27") + 1

[1] "2021-07-28"

as.Date("2021-07-27") + 7

[1] "2021-08-03"

as.Date("2021-07-27") + days(1)

[1] "2021-07-28"

as.Date("2021-07-27") + weeks(1)

[1] "2021-08-03"

mday(as.Date("2021-07-27"))

[1] 27

wday(as.Date("2021-07-27"))

[1] 3

weekdays(as.Date("2021-07-27"))

[1] "Tuesday"

yday(as.Date("2021-07-27"))

[1] 208

Math with Dates
All Date objects are in units of days:

The lubridate package offers some nice functions to help do this more clearly:

lubridate also has some nice helper functions:

29 / 51

UNIVERSITY OF WASHINGTON

seq(from = as.Date("2021-07-27"),
 to = as.Date("2021-08-05"),
 by = "days")

seq(from = as.Date("2021-07-27"),
 to = as.Date("2021-09-04"),
 length.out = 10)

Other Useful Date Functions
lubridate::is.Date() returns TRUE if an object is Date , else FALSE
lubridate::NA_Date_ is NA with class of Date
lubridate duration objects

create specified durations of time (in seconds) that are not bound by conventions
such as leap year and daylight savings time.
See ?duration for the list of functions, which operate intuitively

seq.Date()
Much like seq() and its variants, seq.Date() creates a Date vector:

[1] "2021-07-27" "2021-07-28" "2021
[6] "2021-08-01" "2021-08-02" "2021

[1] "2021-07-27" "2021-07-31" "2021
[6] "2021-08-17" "2021-08-22" "2021

30 / 51

UNIVERSITY OF WASHINGTON

Getting Usable Dates from Billboard
In bb_long we have the date the songs first hit the charts, but not the dates
for the later weeks. However, we can calculate these dates (now that the data
are in long form 🙌) from the week value

bb_long$date <- as.Date(date.entered) + weeks(bb_long$week - 1)
same as 👆 (we will discuss mutate() next week)
bb_long <- bb_long %>%
 mutate(date = as.Date(date.entered) + weeks(week - 1))

year artist track date.entered week rank mins secs length date

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87 4 22 262 2000-02-26

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82 4 22 262 2000-03-04

2000 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72 4 22 262 2000-03-11

First we had to convert date.entered from character to date. Then we added
for each week after the song entered the top 100

31 / 51

UNIVERSITY OF WASHINGTON

Dealing with Factors

32 / 51

UNIVERSITY OF WASHINGTON

Factor Variables
Factors variables denote categorical data and are, of course, very common to
work with in R, but they can be a bit fussy. The forcats package (part of the
tidyverse) helps a lot!

Most regression analyses in R will take factor variables and do the dummy
coding for you. When doing so, R takes the lowest level of a factor and uses it
as the reference for a regression, which is often not desirable

The order of factor levels controls the order of categories in tables, on axes, in
legends, and facets (subplots; discussed in a few weeks) in ggplot2

forcats functions all start with fct_ , which helps a lot with RStudio
autocomplete

To see all the functionality built into forcats , see the manual

33 / 51

https://forcats.tidyverse.org/
https://tidyverse.org/
https://cran.r-project.org/web/packages/forcats/forcats.pdf

UNIVERSITY OF WASHINGTON

fct_relevel()
fct_relevel() (similar to base R relevel()) allows you to reorder factor
levels to any location

f <- factor(x = c("a", "b", "c", "d"),
 levels = c("b", "c", "d", "a"))
print(f)

[1] a b c d
Levels: b c d a

fct_relevel(f, "a")

[1] a b c d
Levels: a b c d

fct_relevel(f, "b", "a")

[1] a b c d
Levels: b a c d

fct_relevel(f, "a", after = 2)

[1] a b c d
Levels: b c a d

34 / 51

UNIVERSITY OF WASHINGTON

fct_recode()
fct_recode() allows you to change factor levels by hand. Non-mentioned
factors will remain in the data:

x <- factor(c("apple", "apple", "cat", "banana", "dog"))
fct_recode(x, apples = "apple", bananas = "banana")

[1] apples apples cat bananas dog
Levels: apples bananas cat dog

If you name the level NULL it will be replaced with NA in the data

fct_recode(x, NULL = "apple", bananas = "bananas")

Warning: Unknown levels in `f`: bananas

[1] <NA> <NA> cat banana dog
Levels: banana cat dog

35 / 51

UNIVERSITY OF WASHINGTON

fct_collapse()
fct_collapse() allows you to collapse factor levels into a smaller number of
groups

The other_level argument allows you to collapse all non-mentioned levels
into one level

party <- factor(c("strong dem", "dem", "ind", "rep", "strong rep",

fct_collapse(party,
 democrat = c("strong dem", "dem"),
 republican = c("strong rep", "rep"),
 other_level = "third_party")

[1] democrat democrat third_party republican republican t
[7] third_party
Levels: democrat republican third_party

36 / 51

UNIVERSITY OF WASHINGTON

Lump together all levels except 3 most frequent

levels(
 fct_lump_n(x, 3)
)

[1] "A" "B" "D" "Other"

Lump together all levels less than prop

levels(
 fct_lump_prop(x, .20)
)

[1] "A" "D" "Other"

fct_lump
The fct_lump function provides methods to lump levels together programatically:

x <- factor(rep(LETTERS[1:9], times = c(40, 10, 5, 27, 1, 1, 1, 1, 1)))
table(x)

x
A B C D E F G H I
40 10 5 27 1 1 1 1 1

Lump together the least frequent levels, ensuring that other remains the smallest level

levels(
 fct_lump_lowfreq(x)
)

[1] "A" "D" "Other"

37 / 51

UNIVERSITY OF WASHINGTON

fct_drop() and fct_expand()
fct_drop() (similar to base R droplevels()) removes levels of the factor that are not in
the data

x <- factor(c("a", "b"), levels = c("a", "b", "c", "d"))
fct_drop(x)

[1] a b
Levels: a b

fct_drop(x, only = "c")

[1] a b
Levels: a b d

fct_expand() does the opposite and adds levels to a factor

fct_expand(x, "e", "f", "g")

[1] a b
Levels: a b c d e f g

38 / 51

UNIVERSITY OF WASHINGTON

fct_infreq() and fct_inorder()
fct_inorder() orders the levels of factor by the order in which they appear in the data

x <- factor(c("c", "a", "b", "b", "c", "a", "b"))
levels(x)

[1] "a" "b" "c"

levels(
 fct_inorder(x)
)

[1] "c" "a" "b"

fct_infreq() orders the levels of a factor by the count of each level in the data
(descending)

levels(
 fct_infreq(x)
)

[1] "b" "a" "c"

39 / 51

UNIVERSITY OF WASHINGTON

fct_explicit_na
fct_explicit_na() gives NA values an explicit factor level, which makes
sure they appear in summary information (e.g., tables) and plots

f1 <- factor(c("a", "a", NA, NA, "a", "b", NA, "c", "a", "c", "b"))
table(f1)

f1
a b c
4 2 2

f1 <- fct_explicit_na(f1)
table(f1)

f1
a b c (Missing)
4 2 2 3

40 / 51

UNIVERSITY OF WASHINGTON

Working With Strings

41 / 51

UNIVERSITY OF WASHINGTON

Regular Expressions
A regular expression (i.e, regex) is a string that allows you to match, locate,
and manage text data extremely flexibly. You write an expression, apply it to
text input, and then do things with the matches you find.

Literal characters are defined text snippets to search for (e.g., Seattle ,
206)

Metacharacters provide flexibility in describing patterns:

backslash \ , caret ^ , dollar sign $, period . , pipe | , question mark ? ,
asterisk * , plus sign + , parentheses (and) , square brackets [and] ,
curly braces { and }
To search for a metacharacter as a literal character, you need to
escape it with two preceding backslashes \\ . For example to match
($1.50) you'd need to write \\(\\$1\\.50\\)

Always test your regular expressions! Here is a helpful web app to make sure your
regular expression is working the way you intend.

42 / 51

https://regexr.com/

UNIVERSITY OF WASHINGTON

[1] 1 3 4 5 6

[1] "a" "a b" "b a" "bac" "aba"

grepl("a", text)

gsub("a", "z", text) sub("a", "z", text)

grep(), gsub(), et al.
grep() takes a regular expression (pattern) and a vector of text (x) and returns the index
(value = F) or actual text (value = T) of the match. grepl() returns a logical vector
specifiying where matches occurred:

text <- c("a", "b", "a b", "b a", "bac", "aba")

gsub() finds all matches and replaces them with specified text. sub() replaces just the first

grep("a", text); grep("a", text, value

[1] TRUE FALSE TRUE TRUE TRUE T

[1] "z" "b" "z b" "b z" "bzc" "z ## [1] "z" "b" "z b" "b z" "bzc" "z

43 / 51

UNIVERSITY OF WASHINGTON

^ specifies the beginning of a string grep("^a", text, value = T)

[1] "a" "ab" "a b" "aba"

$ specifies the end of a string grep("a$", text, value = T)

[1] "a" "b a" "aba"

. matches anything grep(".a$", text, value = T)

[1] "b a" "aba"

? means optionally match (i.e., "it might be
there")

grep("^..?.$", text, value = T)

[1] "ab" "a b" "b a" "bac" "aba"

Regex Metacharacters
When placed in your search string, metacharacters help you evaluate strings flexibly (i.e., without
hardcoding exactly what you're searching for)

text <- c("a", "b", "ab", "a b", "b a", "bac", "aba", "wxyz")

44 / 51

UNIVERSITY OF WASHINGTON

| means match this or that grep("^a|4$", text, value = T)

{ and } are used to specify the number of
characters to match. If 2 numbers, specifies
minimum and maximum.

grep("^a{2,3}", text, value = T)

[1] "aaxy52" "aaabb4c"

[and] specify a group of characters to
match. [a-z] matches all lowercase
letters, [0-9] matches all numbers. [a-
zA-Z0-9@] matches all letters, numbers,
and the @ symbol.

grep("[0-9]{2}$", text, value = T)

[1] "123" "1b34" "aaxy52"

(and) are used to create groups that you
can reference in gsub()

text <- c("a", "b", "ab","aba", "wxyz", "123", "1b34", "aaxy52", "aaabb4c")

[1] "a" "ab" "aba" "1b34"

gsub("^([a-z])(.*)$", "\\U\\1\\2_letter", t

[1] "A_letter" "B_letter" "AB
[5] "WXYZ_letter" "123" "1b
[9] "AAABB4C_letter"

45 / 51

UNIVERSITY OF WASHINGTON

* means match 0+ times. grep("^a*b", text, value = T)

+ means match 1+ times. grep("^a+b", text, value = T)

[1] "ab" "aba" "aaabb4c"

text <- c("a", "b", "ab", "aba", "wxyz", "123", "1b34", "aaxy52", "aaabb4c")

+ and * are particularly useful after groups of characters. For example:

Match anything that ends in 1 or more numbers
grep("[0-9]+$", text, value = T)

[1] "123" "1b34" "aaxy52"

Match anything that has at least 1 number surrounded by letters
grep("^[a-zA-Z]+[0-9]+.*[a-zA-Z]$", text, value = T)

[1] "aaabb4c"

[1] "b" "ab" "aba" "a

46 / 51

UNIVERSITY OF WASHINGTON

Metacharacter Shortcuts
[:alpha:] matches all lowercase([:lower:]) and uppercase
([:upper:]) letters (same as [a-zA-Z])

[:digit:] matches digits 0 through 9 (same as [0-9])

[:alnum:] matches all letters and digits (same as [a-zA-Z0-9])

[:blank:] matches all blank characters (spaces, tabs; same as [\\s\\t]

[:space:] matches all space characters (tab, newline, etc.)

[:punct:] matches all punctuation characters (! " # $ % & ' () * +
, - . / : ; < = > ? @ [\] ^ _ ` { | } ~)

[:graph:] matches all graphical characters ([:alnum:] and
[:punct:])

47 / 51

UNIVERSITY OF WASHINGTON

Lookarounds
A lookahead allows you to match characters that are (positive lookahead (?=)) or are not
(negative lookahead (?!)) followed by certain characters

text <- c("1a", "2a", "3b", "4b", "5c")
grep("[0-9](?=[bc])", text, value = T, perl = T)

[1] "3b" "4b" "5c"

grep("[0-9](?!a)", text, value = T, perl = T)

[1] "3b" "4b" "5c"

A lookbehind allows you to match characters that are (positive lookbehind (?<=)) or are
not (negative lookbehind (?<!)) preceded by certain characters

text <- c("1one", "2one", "3one", "4one")
grep("(?<=[1-3])one", text, value = T, perl = T)

[1] "1one" "2one" "3one"

grep("(?<![14])one", text, value = T, perl = T)

[1] "2one" "3one"

48 / 51

UNIVERSITY OF WASHINGTON

stringr
The stringr package from the tidyverse offers several useful functions when working with strings
(including upgraded base R functions)

Functions in stringr begin with str_ , which makes RStudio's autocomplete helpful

str_detect() is equivalent to grepl() and can be !grepl() with negate = T

str_sub() takes a substring based on start and end values. Negative values specify placement
from the end of the string.

str_sub("Washington", 1, -3)

[1] "Washingt"

str_length() is equivalent to nchar() and returns the number of characters in a string

str_to_upper() , str_to_lower() , and str_to_title() convert cases

str_to_upper("washington"); str_to_lower("WASHINGTON"); str_to_title(c("this is a title"))

[1] "WASHINGTON"

[1] "washington"

[1] "This Is A Title"

49 / 51

https://stringr.tidyverse.org/
https://tidyverse.org/

UNIVERSITY OF WASHINGTON

str_trim() removes extra leading or trailing whitespace

text <- c(" string ", "mystring ")
str_trim(text)

[1] "string" "mystring"

str_pad() to pad a string with characters (default is whitespace)

str_pad("hadley", 30, "left")

[1] " hadley"

str_pad("hadley", 30, "right")

[1] "hadley "

str_pad("hadley", 30, "both")

[1] " hadley "

str_count() counts the number of matches in a string

fruit <- c("apple", "banana", "pear", "pineapple")
str_count(fruit, "a")

[1] 1 3 1 1

50 / 51

UNIVERSITY OF WASHINGTON

Food inspection data for practice
We will be using the "Food Establishment Inspection Data" from King County Dept. of Health.

restaurants <- read_csv("https://adamkucz.github.io/psych548/data/restaurants.csv",
 col_types = "ccccccccnncciclccicccc")

Rows: 257,387
Columns: 22
$ Name <chr> "+MAS CAFE", "100 LB CLAM", "100 LB CLAM"…
$ `Program Identifier` <chr> "+MAS CAFE", "100 LB CLAM", "100 LB CLAM"…
$ `Inspection Date` <chr> "07/29/2020", "09/12/2019", "07/24/2017",…
$ Description <chr> "Seating 0-12 - Risk Category III", "Seat…
$ Address <chr> "1906 N 34TH ST", "1001 FAIRVIEW AVE N Un…
$ City <chr> "SEATTLE", "SEATTLE", "SEATTLE", "SEATTLE…
$ `Zip Code` <chr> "98103", "98109", "98109", "98109", "9810…
$ Phone <chr> "(206) 491-4694", "(206) 369-2978", "(206…
$ Longitude <dbl> -122.3346, -122.3317, -122.3317, -122.331…
$ Latitude <dbl> 47.64818, 47.62902, 47.62902, 47.62902, 4…
$ `Inspection Business Name` <chr> "+MAS CAFE", "100 LB CLAM", "100 LB CLAM"…
$ `Inspection Type` <chr> "Consultation/Education - Field", "Routin…
$ `Inspection Score` <int> 0, 0, 25, 25, 25, 25, 0, 0, 25, 25, 25, 2…
$ `Inspection Result` <chr> "Satisfactory", "Incomplete", "Unsatisfac…
$ `Inspection Closed Business` <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,…
$ `Violation Type` <chr> NA, NA, "BLUE", "RED", "RED", "RED", NA, …
$ `Violation Description` <chr> NA, NA, "3300 - Potential food contaminat…
$ `Violation Points` <int> 0, 0, 5, 5, 10, 5, 0, 0, 5, 5, 10, 5, 0, …
$ Business_ID <chr> "PR0046367", "PR0085848", "PR0085848", "P…
$ Inspection_Serial_Num <chr> "DAZMP7KTI", "DAISVPYB0", "DAYYFZ1IJ", "D…
$ Violation_Record_ID <chr> NA, NA, "IV7PVOPQG", "IVYAWAZOU", "IVMPY7…
$ Grade <chr> "1", "2", "2", "2", "2", "2", "2", "2", "…

51 / 51

https://data.kingcounty.gov/

